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The novel design and construction of proteins or macromolecules (5
are believed to provide new, interesting functions, such as molecular
recognition, information storage, and catalysis. From this viewpoint,
many foldamers have been intentionally synthesized, and their
ordered structures have been repoftédn natural proteins, the
conformation is determined predominantly by their amino acid
sequences and defined by two torsion angles/] for each residue,
as shown in the Ramachandran pt6tThe torsion angles are
restricted by the polarity and bulkiness of the side chain. The
secondary structure is also regulated by intra- or intermolecular
hydrophobic and electrostatic interactions, hydrogen bérais)
salt bridges. The type of amino acid residue considerably contrib-
utes to the secondary structure; for example, leucine is well-known (b)

for exhibiting high helix-forming tendencié$. In non-natural
peptides or foldamers, the helical structure can also be profoundly BUCONH @_{%@C%EU_N »@_@*@}_@co LB
and rationally altered by the residte. N N

In this study, a new concept of “expandettucine” is presented, n
which consists of -leucine and rigid groups. By usingleucine, 1—4(n=1—4)
the formation of a chiral secondary structure is expected because
poly(L-leucine) forms a right-handed (R)-helix* As shown in
Figure 1a, bis(terpyridine)ruthenium(ll) (Ru(tpy)as used as a
rigid group. Ru(tpy) is very popular as a rodlike structdré® and
has been utilized as a building block to construct highly sophisti-
cated molecular architectufdsor metallodendrimer¥ While
Ru(tpy)-containing polymers have been reported in the literatre,
using amino acids for directing building blocks is new. Combining
such rigid complexes with peptides is known as de novo protein
designt* The yellow cylinder in Figure 1a, which contains a rodlike
complex and amide planes that behave as a rigid group, like a large
amide plane, is called an “expanded amide”.

Expanded oliga(-leucine)s 1—4 (Figure 1b), were synthesized

Figure 1. Schematic drawing of (a) expandedeucine and (b) expanded
oligo(L-leucine).
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by a stepwise N-terminal elongation, including alternate complex- 700
ation'>16 and coupling reactions, as shown in Scheme S1 of the (b)
Supporting Information. These cationic compounds were purified 12 - 308
by chromatography and isolated assPBalts. 0 L !

IH NMR and absorption spectra indicated that each [Ruflpy) 'E' e L
unit is almost identical. Absorption spectrabf4 in acetonitrile ot .
are shown in Figure 2a, where the vertical axis is the absorption =3 B
coefficient per [Ru(tpyj2" unit. The spectra are quite similar to PR 491
each other. The intense absorptions at ca. 300 nm are attributed to -; 2 F _./l_\_
o — 7r* transitions which are associated with the aromatic rings of S AN —
the ligand!” Metal-to-ligand charge-transfer (MLCT) transitions 3 2L
were observed at 494 nMThe cyclic voltammograms df—4 in “ T T T T
DMF show almost the same figure without a dependence on the 200 300 400 500 600 700
length (Figure S6 of the Supporting Information). Reversible Ru(lll/ WAVELENGTH/ nm

I) couples were observed at cal.26 V (vs SCE), and two pseudo-  Figure 2. UV—vis (a) and CD (b) spectra df(black),2 (green),3 (blue),
reversible couples attributed to terpyridine moieties were found at and4 (red)‘in acetonitrile at‘30C. T_he vertical axis is normalized for the
—1.17 and—1.39 V. This identity indicates each unit is electro- concentration of the ruthenium unit.

chemically isolated from each other and does not exhibit any In contrast with these results, CD spectra in the same region
significant electronic interactions. exhibit striking enhancement of the intensity per ruthenium ion with
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Figure 3. Solution structure of tetramérbased on théH NMR analysis;
side (left) and top (right) views.

elongating peptide chain (Figure 2b). The CD spectra do not show
typical exciton splitting, which is attributed to electric dipole
moments in chromophores and is usually observed in chiral
octahedral complex€<.18Thus, the intense positive Cotton effects
predominantly arise from electron movement along a right-handed
(P) helix, as found in helicaté§:-2° The enhancement of the CD
signal indicates the formation of a well-defined helical structure.

The solution structure was determined!slyNMR measurements
and molecular dynamicdH NMR spectra of4 in acetonitrileels
show that the four residues are identical. Conformation of the
leucine residue was determined by the simulated annealing (SA)
method!?2using the NMR constraints ¢f. The obtained lowest-
energy structure and the reported crystal struéturig/Ru(tpy)]?"
were applied to the molecular dynamics calcultafi 4. The final
structure is shown in Figure 3. The molecule exhibits a right-handed
(P) 4 helix with two dihedral anglesi(= —146°, 1 = 30°), which
are appropriate fan = 4 (n is the number of residues per tufiys
The pitch is calculated to be 57 A, and the dimensions of the helix
are 18x 28 x 70 A3,

In summary, we have defined and constructed “expanded oligo-
(L-leucine)”. The helical structure is determined by two torsion
angles andy. Electrostatic repulsion between dicationic ruthe-
nium moieties probably contributes to the stabilization of the
extended helix with a long pitch. When a more polar solvent, such
as dimethyl sulfoxide (DMSO), was used instead of acetonitrile,
the intensity of CD decreased (Figure S7 of the Supporting
Information). However, the most important factor is restriction of
the torsion anglesf v). Even if a neutral rigid group is used (e.g.,
t-BUCONHGH,CO—(Leu-NHGH,CO),-NH-t-Bu), the normalized
CD intensity increased with the elongation of peptide chain (Figure
S8 of the Supporting Information). These results suggest that the
electrostatic repulsion is not essential but affects the stabilization;
additionally, the thermal motion breaking the whole helical structure
is limited in the longer chain.

The modification of the peptide is performed easily by the
replacement of [Ru(tpy)?" with various rigid groups. This result
could trigger a wide variety of other parallel studies, such as various
expanded poly(leucine)s or expanded poty{amino acid)s, which
will lead to new functionalized molecules.
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